Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 787
Filter
1.
Chem Biodivers ; : e202400581, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619505

ABSTRACT

For the first time, kinetic thermomagnetic extraction is a novel approach presented in this work. It required the application of four distinct variables: rotation speed (50, 75, and 100 rpm), magnetic field (0.8, 1.2, and 1.6 T), time interval (30, 60, and 90 min), and temperature (45, 55, and 65°C). Numerous phytochemical categories were detected in the 81 crude chloroform extracts of green sweet bell pepper seeds that were collected, according to phytochemical analysis. Nine extracts were discovered to be linked to the coumarin chemical class and to have the same two extraction parameters: a 90-minute extraction duration and a 55°C extraction temperature. To enable their coumarin contents to be chemically separated and chromatographically purified, two of these extracts containing coumarin were chosen. Four new phytocoumarins have been identified and their molecular structures distinguished using FTIR spectra, 1H-NMR, 13C-NMR, and mass analysis. The results demonstrated that the extracted phytocoumarins have exceptional oxidative stress-mitigating characteristics, ranging from 71.51 to 81.48%, when compared to a positive control. Furthermore, they showed excellent cytotoxicity against the test malignant populations (IC50 values of 46.76-81.45 µg/ml). The isolates need to be taken into account as dual COX-2/5-LOX antagonists because they also showed a selective anti-inflammatory effect.

2.
J Ethnopharmacol ; 329: 118156, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583729

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY: To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS: After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS: HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPß) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION: Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPß.

3.
J Ethnopharmacol ; 329: 118133, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580187

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica roots are a significant source of traditional medicines for various cultures around the northern hemisphere, from indigenous communities in North America to Japan. Among its many applications, the roots are used to treat type 2 diabetes mellitus; however, this application is not mentioned often. Ethnopharmacological studies have reported the use of A. japonica var. hirsutiflora, A. furcijuga, A. shikokiana, and A. keiskei to treat diabetes symptoms, and further reports have demonstrated the three angelica roots, i.e., A. japonica var. hirsutiflora, A. reflexa, and A. dahurica, exhibit insulin secretagogue activity. AIM OF THE STUDY: This study aimed to phytochemically characterize and compare angelica roots monographed in the European Pharmacopeia 11th, isolate major plant metabolites, and assess extracts and isolates' capability to modulate pancreatic ß-cell function. MATERIALS AND METHODS: Root extracts of Angelica archangelica, Angelica dahurica, Angelica biserrata, and Angelica sinensis were phytochemically profiled using liquid chromatography method coupled with mass spectrometry. Based on this analysis, simple and furanocoumarins were isolated using chromatography techniques. Extracts (1.6-50 µg/mL) and isolated compounds (5-40 µmol/L) were studied for their ability to modulate insulin secretion in the rat insulinoma INS-1 pancreatic ß-cell model. Insulin was quantified by the homogeneous time-resolved fluorescence method. RESULTS: Forty-one secondary metabolites, mostly coumarins, were identified in angelica root extracts. A. archangelica, A. dahurica, and A. biserrata root extracts at concentration of 12.5-50 µg/mL potentiated glucose-induced insulin secretion, which correlated with their high coumarin content. Subsequently, 23 coumarins were isolated from these roots and screened using the same protocol. Coumarins substituted with the isoprenyl group were found to be responsible for the extracts' insulinotropic effect. CONCLUSIONS: Insulinotropic effects of three pharmacopeial angelica roots were found, the metabolite profiles and pharmacological activities of the roots were correlated, and key structures responsible for the modulation of pancreatic ß-cell function were identified. These findings may have implications for the traditional use of angelica roots in treating diabetes. Active plant metabolites may also become lead structures in the search for new antidiabetic treatments.

4.
Nat Prod Res ; : 1-10, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563116

ABSTRACT

Phytochemical investigation of the roots of Saposhnikovia divaricata (Turcz.) Schischk resulted in the isolation of twelve coumarin derivatives including one new 3,4-dihydroisocoumarin (1) and eleven known 3,4-unsubstituted coumarins (2-12). Structural elucidation of compounds 1-12 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. LPS-induced RAW264.7 inflammatory cell model was used to determine the potential antiinflammation activity of all the isolated compounds in vitro. The results showed that compound 3 significantly inhibited the production of lipopolysaccharide (LPS)-induced NO in macrophages (IC50 = 4.54 ± 1.71 µM), more active than the positive control (L-NMMA).

5.
Fitoterapia ; 175: 105929, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38548026

ABSTRACT

Heterocycle conjugates provide a fresh investigative scope to find novel molecules with enhanced phytotherapeutic characteristics. Coumarin-based products are widely used in the synthesis of several compounds with biological and medicinal properties since they are naturally occurring heterocycles with a broad dispersion. The investigation of coumarin-based phytochemicals with annulated heterocyclic rings is a promising approach to discovering novel conjugates with significant phytotherapeutic attributes. Due to the applicable coumarin extraction processes, a range of linear coumarin-heterocyclic conjugates were isolated from different natural resources and exhibited remarkable therapeutic efficacy. This review highlights the phytotherapeutic potential and origins of various natural linear coumarin-heterocyclic conjugates. We searched several databases, including Science Direct, Web of Science, Springer, Google Scholar, and PubMed. After sieving, we ultimately identified and included 118 pertinent studies published between 2000 and the middle of 2023. This will inspire medicinal chemists with extremely insightful ideas for designing and synthesizing therapeutically active lead compounds in the future that are built on the pharmacophores of coumarin-heterocyclic conjugates and have significant therapeutic attributes.

6.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543164

ABSTRACT

Angelicae pubescentis radix (APR) has been traditionally used for thousands of years in China to treat rheumatoid arthritis (RA), an autoimmune disorder. As the main active coumarin of APR, columbianadin (CBN) exhibits a significant anti-inflammatory effect in vitro. However, the anti-inflammatory activity and underlying mechanism of CBN in vivo remain unclear. This work aimed to elucidate the anti-inflammatory activity of CBN in vivo and its related signaling pathways in a D-Gal-induced liver injury mouse model. Analysis of biochemical indices (ALT and AST) and pro-inflammatory cytokines (IL-1ß and IL-6) in serum indicated that CBN significantly ameliorated D-Gal-induced liver injury. CBN treatment also significantly increased the activities of antioxidant enzymes (SOD, CAT, GPx), and decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) in liver tissue. Liver histology revealed that CBN treatment reduced hepatic inflammation. Western blot analysis indicated that CBN down-regulates the expression of phosphorylated JAK2, STAT3, MAPK, and NF-κB in the related signaling pathways. These findings support the traditional use of APR as a remedy for the immune system, and indicate that the JAK2/STAT3 and JAK2/p38/NF-κB signaling pathways may be important mechanisms for the anti-inflammatory activity of CBN in vivo.

7.
Med Res Rev ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532246

ABSTRACT

Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus. The widely investigated psoriasis drugs, methoxsalen, and trioxsalen, also contain a benzo-α-pyrone nucleus. Benzo-γ-pyrone (chromone) containing drugs, cromoglic acid, and pranlukast were approved as treatments for asthma in 1982 and 2007, respectively. Numerous other small molecules with a benzopyrone core are under clinical investigation. The present review discusses the discovery, absorption, distribution, metabolism, excretion properties, and synthetic approaches for the Food and Drug Administration-approved and clinical-stage benzopyrone class of compounds. The role of the pyrone core in biological activity has also been discussed. The present review unravels the potential of benzopyrone core in medicinal chemistry and drug development.

8.
J Xenobiot ; 14(1): 380-403, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38535499

ABSTRACT

Mast cells (MCs) are immune cells that reside in tissues; particularly in the skin, and in the gastrointestinal and respiratory tracts. In recent years, there has been considerable interest in the Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2), which is present on the surface of MCs and can be targeted by multiple exogenous and endogenous ligands. It is potentially implicated in non-IgE-mediated pseudoallergic reactions and inflammatory conditions such as asthma or atopic dermatitis. In this paper, we review natural products and herbal medicines that may potentially interact with MRGPRX2. They mainly belong to the classes of polyphenols, flavonoids, coumarins, and alkaloids. Representative compounds include rosmarinic acid, liquiritin from licorice extract, osthole, and sinomenine, respectively. While evidence-based medicine studies are still required, these compounds have shown diverse effects, such as antioxidant, analgesic, anti-inflammatory, or neuroprotective. However, despite potential beneficial effects, their use is also burdened with risks of fatal reactions such as anaphylaxis. The role of MRGPRX2 in these reactions is a subject of debate. This review explores the literature on xenobiotic compounds from herbal medicines that have been shown to act as MRGPRX2 ligands, and their potential clinical significance.

9.
Microb Pathog ; 190: 106608, 2024 May.
Article in English | MEDLINE | ID: mdl-38503396

ABSTRACT

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Coumarins , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/metabolism , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism
10.
J Agric Food Chem ; 72(12): 6711-6722, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38491973

ABSTRACT

Through bioassay-guided isolation, eight undescribed coumarins (1-8), along with six reported coumarins (9-14), were obtained from Coriaria nepalensis. The new structures were determined by using IR, UV, NMR, HRESIMS, and ECD calculations. The results of the biological activity assays showed that compound 9 exhibited broad spectrum antifungal activities against all tested fungi in vitro and a significant inhibitory effect on Phytophthora nicotianae with an EC50 value of 3.00 µg/mL. Notably, compound 9 demonstrated greater curative and protective effects against tobacco balack shank than those of osthol in vivo. Thus, 9 was structurally modified to obtain new promising antifungal agents, and the novel derivatives (17b, 17j, and 17k) exhibited better effects on Sclerotinia sclerotiorum than did lead compound 9. Preliminary mechanistic exploration illustrated that 9 could enhance cell membrane permeability, destroy the morphology and ultrastructure of cells, and reduce the exopolysaccharide content of P. nicotianae mycelia. Furthermore, the cytotoxicity results revealed that compound 9 exhibited relatively low cytotoxicity against HEK293 cell lines with an inhibition rate of 33.54% at 30 µg/mL. This research is promising for the discovery of new fungicides from natural coumarins with satisfactory ecological compatibility.


Subject(s)
Fungicides, Industrial , Magnoliopsida , Humans , HEK293 Cells , Fungicides, Industrial/chemistry , Antifungal Agents/pharmacology , Tobacco , Coumarins/chemistry , Structure-Activity Relationship
11.
Plants (Basel) ; 13(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38475448

ABSTRACT

Phlojodicarpus sibiricus, a valuable endangered medicinal plant, is a source of angular pyranocoumarins used in pharmacology. Due to limited resource availability, other pyranocoumarin sources are needed. In the present research, the chemical composition of a closely related species, Phlojodicarpus villosus, was studied, along with P. sibiricus. High-performance liquid chromatography and mass-spectrometric analyses, followed by antibacterial activity studies of root extracts from both species, were performed. P. sibiricus and P. villosus differed significantly in coumarin composition. Pyranocoumarins predominated in P. sibiricus, while furanocoumarins predominated in P. villosus. Osthenol, the precursor of angular pyrano- and furanocoumarins, was detected in both P. sibiricus and P. villosus. Angular forms of coumarins were detected in both species according to the mass-spectrometric behavior of the reference. Thus, P. villosus cannot be an additional source of pyranocoumarins because their content in the plant is critically low. At the same time, the plant contained large amounts of hydroxycoumarins and furanocoumarins. The extracts exhibited moderate antibacterial activity against five standard strains. The P. villosus extract additionally suppressed the growth of the Gram-negative bacterium E. coli. Thus, both Phlojodicarpus species are promising for further investigation in the field of pharmaceuticals as producers of different coumarins.

12.
Front Chem ; 12: 1362992, 2024.
Article in English | MEDLINE | ID: mdl-38440776

ABSTRACT

This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).

13.
Plant Foods Hum Nutr ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436827

ABSTRACT

Edgeworthia gardneri (Wall.) Meisn., a member of the genus Edgeworthia in the family Thymelaeaceae, has long been applied as an edible and medicinal plant in China. E. gardneria has a hypoglycemic effect and is used to prepare daily drinks for the prevention and treatment of diabetes. However, the hypoglycemic substances involved remain unknown. The present study aimed to screen the α-glucosidase-inhibitors of E. gardneri and analyze its chemical profile using a ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method. As a result, the ethyl acetate fraction (EAF) had significant α-glucosidase-inhibitory and antioxidant activities but did not show an α-amylase-inhibitory activity. A total of 67 compounds were identified in the EAF by UPLC-Q-TOF-MS/MS analysis; among them, 48 compounds were first discovered in the genus Edgeworthia. Additionally, five flavonoids, namely, isoorintin, secoisolaricirinol, tiliroside, chrysin, and kaempferol, had α-glucosidase-inhibitory activities. Rutin had a α-amylase-inhibitory activity. Daphnoretin, a kind of coumarin, has α-glucosidase and α-amylase-inhibitory activities. These findings enrich the chemical library of E. gardneria. EAF has a selective α-glucosidase-inhibitory activity, and flavonoids and coumarins may be the active components of EAF. E. gardneria has important value for developing multiple-target hypoglycemic drugs.

14.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411010

ABSTRACT

In this study, monobrominated coumarins (5-6) and bis-coumarins (7-9) were synthesized from 3-carboxylic coumarin and 7-hydroxy-4-methyl coumarin using 1,4-dibromobutane as a binding agent, according to the synthesis procedures described in the literature. Amongst these coumarins, three are new compounds: monobrominated coumarin 5 and bis-coumarins 7 and 9. The structures of the synthesized coumarins were confirmed by FTIR, NMR and HRMS-ESI. In vitro antimicrobial evaluation of these coumarins against strains of twelve bacteria and four fungi revealed their bactericidal and fungicidal properties, with increased antibacterial activity for monocoumarins and improved antifungal activity for bis-coumarins. It was also found that the antibacterial activity was enhanced by the etheric bond, Br atom and alkyl chain and reduced by the ester bonds at position 3 of the pyrone ring or an additional coumarin unit, while the antifungal activity was reinforced by ester bonds and deactivated by the Br atom. For the first time, the in silico investigations of such coumarins were carried out and it was observed that they are less toxic, suitable for oral administration with good permeability through cell membrane, are able to circulate freely in the bloodstream and cross Blood-Brain-Barriers. Moreover, their molecular docking in DNA indicated stable coumarin-DNA complexes with good scores. The results of molecular dynamics simulations performed for 200 ns revealed the rigidity and stability of bis-coumarins (7-9) in the DNA binding pocket and predict that they are potent binders.Communicated by Ramaswamy H. Sarma.

15.
Chem Asian J ; 19(8): e202400042, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38386270

ABSTRACT

The present work represents a novel methodology for the selective arylation of coumarin-3-carboxylates with arylboronic acids via a photochemical route, marking the first-ever attempt for the direct alkenyl C-H arylation using rose bengal as a photocatalyst, which is a readily available and cost-effective alternative to transition metal catalysis. The reaction proceeds smoothly in MeOH/H2O solvent media in the presence of radical initiator affording the arylated products in good yields (60-80 %). The reaction parameters such as visible light, radical initiator, oxidant, anhydrous solvent, and inert atmosphere play a crucial role for the success of this methodology. The substituents present on the substrate show a significant effect on the conversion. This study provides a valuable contribution to the field of organic synthesis offering a new and efficient approach to the arylation of coumarin-3-carboxylic acid esters with a broad substrate scope and high functional group tolerance. It is a versatile method and provides a direct access to biologically relevant 4-arylcoumarin-3-carboxylates.

16.
Chem Biodivers ; 21(3): e202400184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372676

ABSTRACT

The phytochemical study of Peucedanum praeruptorum led to the isolation of twenty-five coumarins (1-25). Of which, (±) praeruptol A (±1), one pair of previous undescribed seco-coumarin enantiomers were obtained. Their structures were established according to HR-ESI-MS, NMR, X-ray single crystal diffraction analysis, as well as ECD calculation. All compounds were tested for anti-inflammatory activity in the RAW264.7 macrophage model, and eight compounds (7-10, and 13-16) exhibited significant inhibitory effects with IC50 values ranging from 9.48 to 34.66 µM. Among them, compound 7 showed the strongest inhibitory effect, which significantly suppressed the production of IL-6, IL-1ß, and TNF-α, as well as iNOS and COX-2 in a concentration-dependent manner. Further investigated results showed that compound 7 exerted an anti-inflammatory effect via the NF-κB signaling pathway.


Subject(s)
Coumarins , NF-kappa B , NF-kappa B/metabolism , Coumarins/pharmacology , Coumarins/metabolism , Anti-Inflammatory Agents/pharmacology , Plant Extracts/chemistry , Signal Transduction , Lipopolysaccharides/pharmacology
17.
J Asian Nat Prod Res ; : 1-11, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373219

ABSTRACT

In this study, two new (1, 13) and fourteen known (2-12, 14-16) compounds were isolated from the branches and leaves of Daphne retusa. On the basis of chemical evidence and spectral data analysis (UV, ECD NMR, and HR-ESI-MS), the structures of new compounds were elucidated. Furthermore, all compounds have been tested for their inhibitory effects on NO production in LPS-induced RAW 264.7 cells, and compound 3 showed obvious inhibitory effect. Through target screening and molecular docking technology, potential binding targets for compound 3 to exert anti-inflammatory effects have been predicted.

18.
Chemistry ; 30(24): e202400229, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38369579

ABSTRACT

Quaternary N-aryl-DABCO salts were introduced for the first time as a highly selective sensing platform for thiols and selenols. By employing this platform, a highly sensitive coumarin based "off-on" fluorescent probe was designed and synthesized. The probe possesses a good solubility in water, low background fluorescence, and, most importantly, demonstrates high selectivity to aryl thiols and selenols over their aliphatic counterparts and other common nucleophiles. A dramatic increase in fluorescence intensity is achieved through the selective cleavage of the quaternized DABCO-ring, yielding a piperazine derivatives with a high fluorescence quantum yield (~72 %). Moreover, stability of the probe to the most used reducing agents DTT and TCEP was demonstrated. The limits of detection for p-thiocresol and phenyl selenide were evaluated to be 22 nM and 6 nM, respectively.

19.
Plant J ; 117(6): 1716-1727, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361338

ABSTRACT

Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Coumarins/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Homeostasis , Plant Roots/genetics , Plant Roots/metabolism
20.
J Enzyme Inhib Med Chem ; 39(1): 2311157, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38348846

ABSTRACT

Novel coumarin derivatives were synthesised and tested for their cytotoxicity against human cancer cells (PC-3 and MDA-MB-231). Compounds 5, 4b, and 4a possessed potent cytotoxic activity against PC-3 cells with IC50 3.56, 8.99, and 10.22 µM, respectively. Compound 4c displayed cytotoxicity more than erlotinib in the MDA-MB-231 cells with IC50 8.5 µM. Moreover, compound 5 exhibited potent inhibitory activity on EFGR with IC50 0.1812 µM, as well as PI3Kß inhibitory activity that was twofold higher than LY294002, suggesting that this compound has a dual EGFR and PI3Kß inhibiting activity. Docking aligns with the in vitro results and sheds light on the molecular mechanisms underlying dual targeting. Furthermore, compound 5 decreased AKT and m-TOR expression in PC-3 cells, showing that it specifically targets these cells via the EGFR/PI3K/Akt/m-TOR signalling pathway. Simultaneously, compound 5 caused cell cycle arrest at S phase and induced activation of both intrinsic and extrinsic apoptotic pathways.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis , ErbB Receptors/metabolism , Coumarins/pharmacology , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Molecular Docking Simulation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL